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Abstract 

Battery electric trucks (BETs) are the most promising option for fast and large-scale CO2 emission 

reduction in road freight transport. Yet, the limited range and longer charging times compared to 

diesel trucks make long-haul BET applications challenging, so a comprehensive fast charging net-

work for BETs is required. However, little is known about optimal truck charging locations for long-

haul trucking in Europe. Here we derive optimized truck charging networks consisting of publicly 

accessible locations across the continent. Based on European truck traffic flow estimates for 2030 

and actual truck stop locations we construct a long-term minimum charging network that covers 

the expected charging demand. Our approach introduces an origin-destination pair sampling 

method and includes local capacity constraints to compute an optimized stepwise network expan-

sion along the highest demand routes in Europe. For an electrification target of 15% BET share in 

long-haul and without depot charging, our results suggest that about 91% of electric long-haul 

truck traffic across Europe can be enabled already with a network of 1,000 locations, while 500 

locations would suffice for about 50%. We furthermore show how the coverage of origin-destina-

tion flows scales with the number of locations and the size of the stations. Ideal locations to cover 

many truck trips are at highway intersections and along major European road freight corridors 

(TEN-T core network). 

Key words 

charging infrastructure; battery trucks; megawatt charging 
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1  Introduction 

As part of the “Green Deal” and to become climate neutral by 2050, the European Union (EU) 

passed measures to reduce greenhouse gas emissions in all sectors, including the transport sector 

(Ovaere et al. 2022). To achieve the target of climate neutrality and to fulfil current EU legislation, 

heavy-duty vehicles (HDVs), i.e. > 12 t gross vehicle weight, also need to become zero emission 

vehicles (ZEV) (Breed et al. 2021; Plötz et al. 2023). Battery electric trucks (BETs) powered by elec-

tricity and stored in batteries have developed as the most promising solution to reduce road 

freight transport emissions (IEA 2023; Plötz 2022). Although there are currently few HDV BETs on 

European roads, manufacturers expect a sales share of up to 50% in the EU by 2030 (NOW 2023). 

Surveys among logistics companies and experts show that charging infrastructure is one key ob-

stacle for a successful market diffusion of BETs (Anderhofstadt et al. 2019; Bae et al. 2022; Kon-

stantinou et al. 2023). Technical analyses show that public charging infrastructure is needed for 

long-haul applications (cf. Speth et al. (2024) for Germany, Borlaug et al. (2021) and Borlaug et al. 

(2022) for the U.S., Nykvist et al. (2021)). Accordingly, the Alternative Fuels Infrastructure Regula-

tion (AFIR - Regulation (EU) 2023/1804) requires EU member states to set up highway fast 

chargers quickly. By 2030, charging pools shall be installed every 60 km along the TEN-T Core 

network (47,000 km (one direction)) in both directions. Another 62,000 km (one direction) shall be 

equipped with charging pools every 100 km in each direction (EU 2023). The planned Megawatt 

Charging System (MCS) will allow for charging power in the megawatt range and therefore enable 

truck charging within 30 minutes (CharIN 2023). We use the terms “charging pool“, ”charging sta-

tion”, or ”charging location” to denote one or more charging points at a specific location (EU 

2023).  

Previous attempts in the literature have analysed – and in general confirmed – the technical feasi-

bility of BETs but without identification of optimal charging locations (Borlaug et al. 2021; Borlaug 

et al. 2022; Çabukoglu et al. 2018; Liimatainen et al. 2019; Nykvist et al. 2021; Speth et al. 2024; 

Tong et al. 2021). However, they did not define regionally resolved charging locations for BET. 

Following the idea of the AFIR, Speth et al. (2022a) and Speth et al. (2022b) placed charging pools 

at regular intervals, for example every 50 or 100 km, and dimensioned single pools based on the 

passing traffic flow. They calculated that approximately 5,000 public megawatt charging points at 

1,500 pools could serve 15% of truck traffic in Europe by 2030. Shoman et al. (2023) simulated a 

European truck fleet and defined public charging locations based on the mandatory break after 

4.5 hours of driving. They found a need for approximately 9,000 megawatt charging points to 

serve 15% of the European truck fleet in 2030. Similar attempts can be found for smaller areas, for 

example for the relation Helsingborg-Stockholm (Sweden) (Karlsson et al. 2023) and for Ontario 

(Canada) (Dimatulac et al. 2023). But the analyses do not answer how to design a minimal net-

work that ensures traffic along all relevant routes.  

Jochem et al. (2016) designed a minimum charging network for passenger cars in Germany, using 

a flow-refuelling location model. Later, the approach was improved and adopted to the European 

highway network (Jochem et al. 2019). However, the approach did not consider parking capacities 

at rest areas. Furthermore, the analysis focused on highly trafficked origin-destination relations (at 

least 5,000 vehicles per year (Jochem et al. 2019)) to keep the problem solvable. Rose et al. (2020) 

added a simplified (Böhle 2021) capacity constraint to the flow-refuelling location model to calcu-

late a hydrogen truck refuelling network for Germany, based on 2,655 origin-destination truck 

trips.  

In summary, to the best of the authors’ knowledge, no study has constructed minimal charging 

networks for battery electric trucks in Europe so far. From a methodological point of view, no 
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prior work optimizes charging infrastructure for a wide range of geographical demands while ap-

plying a capacity constraint.  

The present study aims to fill this gap in the literature by addressing the following research ques-

tion: How much BET long-haul traffic in Europe can be enabled by optimally placed megawatt 

chargers? This work differs from previous research in several aspects. First, we use an optimization 

model that includes station capacity constraints to compute networks for all of Europe. Second, 

our results indicate the scaling of truck flow coverage in relation to the number of locations and 

station capacity. Third, we use a sampling technique to represent both large and small origin-des-

tination truck flows while maintaining tractability of the optimization problem. This contrasts with, 

e.g., Shoman et al. (2023), who exclude truck flows that are individually small, although when ag-

gregated they represent a significant share of the geographic distribution of total flow volume. 

The outline of this paper is as follows. Section 2 introduces the truck traffic and stop location data 

used for the analysis and the optimization model used for placing the charging stations. Section 3 

presents the results from our analysis, followed by a discussion in Section 4. We present our con-

clusions in Section 5. 
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2 Data and Methods 

In this section, we detail the data used in our study and our methodology. 

2.1 Data 

Our approach to determine optimal charging locations builds on three main kinds of input data: 

1) Candidate locations for charging stations. These serve as the ground set of options available 

for setting up charging infrastructure. Our model is going to pick among the candidate loca-

tions with the goal of minimizing the number of selected locations. 

2) Origin-destination pairs for HDV traffic demand. As we follow a demand-based approach, the 

origin-destination (OD) pairs and the associated truck flow volume serve as the demand sig-

nal where charging stations are needed and/or should be prioritized. 

3) Distances and transit times. To determine feasible routes for OD pairs that align with detour, 

range, and charging requirements, information on distances and transit times between loca-

tions is needed. The charging stations are then placed such that the selected locations enable 

feasible routes for OD pairs. 

In the following sections, we describe the data sources we use for the inputs. 

2.1.1 Charging Station Location Candidates 

We construct a candidate set of charging locations with a focus on existing and publicly accessible 

sites. Most of these locations are extracted from the recently published data set (Link et al. 2023, 

2024). In regions with insufficient density of candidates we augment the set with locations pub-

lished by ACEA (European Automobile Manufacturers’ Association) on their website (ACEA 2022). 

In total, the two data sets contain more than 50,000 actual truck stop locations across Europe. For 

this paper's purpose, we use a subset of over 10,000 locations as input candidates for the optimi-

zation model, which facilitates our approach's scalability. We construct the subset by selecting the 

most suitable locations while limiting their geographic density, as detailed below. 

To be precise, we iteratively select locations to keep and remove any other candidates within a 

geodetic distance of at most 9 km, which conversely guarantees at least 9 km distance between 

any two locations in the remaining subset. In consequence, the optimization model effectively only 

places charging locations with a precision of at best about 5 km (in those regions where candidates 

are most dense). Therefore, we can think of each candidate as a representative for an area with 9 

km diameter. This approach is justified by the assumption that any deviations within the candidate 

areas are negligible from a practical perspective. 

To ensure we are picking the most suitable candidate locations as representatives, before filtering 

we initially rank the locations based on their attributes as a proxy for suitability. More precisely, we 

hierarchically sort the locations published by (Link et al. 2023) based on the provided attributes 

truckParkingConfidence, type and totalArea_m2 in that order. For truckParkingConfi-

dence, we rank High before Medium. For type, we rank in the order Truck Stop/Rest Area, 

Fueling/Truck Stop, Parking/Rest Area, Fueling, Rest Area, and finally, Parking. For 

totalArea_m2 we rank in descending order. The ACEA locations are added at the bottom of the 

list such that they are only included in areas where there are no other public locations nearby. 

After filtering as described above we are left with 8,116 public locations and 2,508 ACEA locations, 

which yields 10,624 candidate locations in total. 
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2.1.2 Origin-Destination Pairs 

As a basis for HDV traffic demand, we use the publicly available data set published by Speth et al. 

(2021). We first briefly summarize the characteristics of that data set and then describe our prepro-

cessing to make it suitable for our study. 

The original data set contains HDV traffic flows between 1,675 NUTS3 regions all over Europe. In 

total, more than 1.5 million directed traffic flows are available. The flow data are based on an EU 

project from 2010 (Szimba et al. 2012) and have been updated using more recent statistics on road 

transport. Beyond that, a volume flow forecast for 2030 has been added. For this purpose, a growth 

rate for the volume of transported goods in tons was determined for each country. The individual 

good flows were then scaled accordingly. Finally, they were converted to vehicle traffic flows. A 

detailed description can be found in Speth et al. (2022c).  

Based on the original data we prepare a set of OD truck flows that serve as input to our demand-

based optimization approach. This section documents the preprocessing steps involved. First, we 

select OD pairs with origin and destination in EU27, Switzerland, Norway, and the UK, excluding 

some smaller isolated areas (e.g., Cyprus and smaller islands). We ignore countries that are not 

represented in the charging station candidate location set (see Appendix A.1 for details on the 

removed regions). Further, we remove any trivial OD pairs, i.e., those with an assigned 2030 truck 

flow volume of less than a single vehicle. 

Next, we extract the subset of OD pairs that correspond to long-haul truck traffic. To this end, we 

define long-haul OD pairs as those where the associated direct transit distance is at least 335 km, 

which is approximately equivalent to a transit time of 4.5 hours for road travel. Note that the dis-

tance and transit time associated with each OD pair is determined by the distance and transit time 

of the fastest route between origin and destination, which we extracted from a separate data source 

(see below). After filtering we are left with 1,092,625 long-haul OD pairs (72% of all OD pairs) whose 

associated truck flow of 147,377,340 HDVs per year corresponds to about 17% of the total truck 

flow and 48% of total vehicle-kilometers in the estimate for 2030. The relatively small share of truck 

flow is because the majority of HDV traffic corresponds to urban and regional instead of long-haul 

transport. 

Now, the number of OD pairs remaining is too large to simultaneously incorporate all of them in 

the optimization model. However, since there is considerable overlap between the routes of the 

individual OD pairs, it is not necessary to consider all of them at the same time. Instead, we rely on 

random samples from the distribution of all OD pairs. To ensure the samples are representative 

both in terms of geography and associated truck flow, we first transform the OD pair distribution 

as follows. Every OD pair that has truck flow 𝑓 >  100 HDVs per year is split into 𝑛 = ⌈
𝑓

100
⌉ copies 

with truck flow 
𝑓

𝑛
 each. This results in a distribution of 2,290,498 OD pairs (each assigned a truck 

flow between 1 and 100). Our transformation enables the partial sampling of very high truck flow 

OD pairs in the original distribution. Therefore, we can draw representative samples in terms of 

truck flow while picking OD pairs uniformly at random from the transformed distribution. The latter 

is necessary to represent different regions proportionally, since the NUTS-3 region aggregation 

differs across countries (e.g., NUTS-3 regions in Germany are significantly smaller than in France 

and thus have more associated OD pairs but with less truck flow each). 

Finally, we adjust the truck flow of every OD pair to the relative share of BETs, which we assume at 

15% following Shoman et al. (2023). From the final OD pair distribution, we draw samples uniformly 

at random without replacement. As sample size we choose 1% of the data, which corresponds to 

22,905 OD pairs for each optimization run. Section 2.2 details how we use the samples to construct 

optimized station networks. 
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2.1.3 Distances and Transit Times 

Our model relies on distance and transit time information between geo-coordinates to determine 

feasible routes for HDVs. To provide these values, we use a custom Open Source Routing Machine 

server (OSRM, Luxen et al. (2011)) based on OpenStreetMap data (OSM 2024). We compute the 

distance and transit time for a fastest route (note that ”fastest route” may not be unique) between 

all relevant location pairs via the table service of OSRM, which allows to query millions of data 

points in a matter of minutes. Based on the input locations considered we collect distance and 

transit time information for more than 80 million pairs of points. 

2.2 Method 

In this section we summarize the properties of the optimization approach to construct demand-

based truck charging networks. A supplementary mathematical formulation of the involved opti-

mization problem can be found in Appendix A.1.2. For further details on the formulation and opti-

mization methods we refer to Arslan et al. (2019), Nordlund et al. (2023) and the references 

therein. For this paper, we use our own modified version of an optimization algorithm available as 

open-source implementation on GitHub (CHALET 2023). Our code employs only a subset of the 

techniques described in Nordlund et al. (2023). 

For any given set of charging locations, we consider a station network that specifies the possible 

routes for OD pairs. Here, a route is a sequence of charging locations that are visited between 

origin and destination. An OD truck flow is called feasible (or covered) if a route from origin to 

destination through the station network exists such that the route satisfies several constraints. 

These are set in the model, and we summarize them as constraints i) – v) below. For our analyses 

in Sections 3.1 and 3.2 we only enforce constraints i) – iii), where iii) dictates charging stops in 

flexible distance intervals. This makes routes independent of vehicle and charger technology and 

approximately aligns the charging stop frequency with European driving break regulation. Then, 

in Section 3.3 we replace constraint iii) by iv) and v), which instead make the route dependent on 

vehicle range and charging time requirements. We use this approach to analyse the impact of 

technological parameters on minimal charging networks. 

i) Detour constraint: The total driving time is limited to at most τ̅ = 𝑚𝑎𝑥{ 1.05 ⋅

τ, 30 min + τ} where 𝜏 is the direct non-stop driving time from origin to destination. In 

other words, we allow an extra 5% of driving time, but at least 30 minutes. This en-

sures the routes can accommodate charging stops by deviating within a small margin 

from the fastest route (which does not include any stops). Alternatively, the extra 

available driving time may also be spent on charging if applicable (cf. travel time con-

straint). 

ii) Station capacity constraint: To avoid an overallocation of charging stops to a small set 

of locations, we limit the truck flow that can be associated with any individual location. 

Since the actual capacities per location are highly uncertain and can vary considerably, 

we use a simple capacity assumption across all locations that serves as a simple 

guardrail in the model. To be precise, we limit the truck flow per candidate location to 

a maximum of 100,000 HDVs per year by default.* To reflect the capacity assumption 

proportionally in each sample of OD pairs (compare Section 2.1), we down-scale the 

capacity accordingly by the sample size (to 1,000 as 1% of 100,000). In Sections 3.1 

 

*At a high level this value can be motivated as follows. Assuming 250 – 300 driving days per year, it corresponds to at most 333 – 400 charging 

stops on average per day. For candidates that represent the most capable locations, e.g. service areas of both sides of a motorway with 10 charg-

ing points each, this corresponds to 17 – 20 charging stops per charger per day. If each charging stop is at most 45 mins, every charger is occupied 

for 13 – 15 hours per day, which implies a temporal charger utilization of around 60%. 
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and 3.3 we use the default station capacity value of 100,000 HDVs per year, while in 

Section 3.2 we analyze how the results from Section 3.1 change when the capacity 

value is varied between 0 and 150,000 HDVs per year. 

iii) Charging stop constraint: The first stop after departure from the origin must be within 

200 km from the origin and the last stop before arrival at the destination must be 

within 200 km of the destination. The transit distance between any two consecutive 

charging stops must be at least 200 km and at most 335 km (which corresponds to 

approx. 4.5 hours road travel). Apart from being similar to legally mandated driving 

breaks, this can also be interpreted as 400 – 500 km BET range without any depot 

charging and 50% state-of-charge (SOC) required on arrival. We use this constraint for 

the results in Sections 3.1 and 3.2 while in Section 3.3 we replace it by iv) and v). 

iv) Range constraint: The distance between any two consecutive charging stops is limited 

to the maximum vehicle range 𝑅 (after subtraction of a 100 km safety margin). The 

first and last charging stop must be within a distance of 50% 𝑅 from the origin, re-

spectively the destination. This implements the common half-range assumption, which 

means that the vehicle requires at most 50% max range when leaving an origin and at 

least 50% remaining range when arriving at a destination. Consequently, every OD trip 

requires at least one charging stop, and at the last charging stop the vehicle needs to 

recharge sufficiently to arrive with 50% battery at the destination. 

v) Travel time constraint: The allowed total travel time (defined as sum of driving and 

charging time) may not exceed τ̂ = β(τ̅), where 𝛽 is a function that adds 45 mins of 

break time for every full 4.5 hours of input driving time. For example, β(2 hours) =

 2 hours and β(6 hours) = 6 hours 45 mins. In essence, this means the legally required 

driving break time (45 mins every 4.5 hours) must suffice for most of the charging 

time. Charging time itself is computed as a non-linear function of the charger power, 

starting battery state and the target battery state, which in turn depends on the dis-

tance to the next stop (and the final battery state at the destination if applicable). 

The optimization model selects charging locations within a specified budget to maximize the OD 

truck flow that is feasible with respect to the selected locations (cf. Appendix A.1.2). In other words, 

it determines an optimal placement of charging locations to cover as much OD truck flow as pos-

sible given the route constraints. To compute OD coverage curves that show the tradeoff between 

the number of locations and the implied OD coverage, we initially compute the maximum possible 

coverage for an unlimited number of locations. Afterwards, we re-run the model with sequentially 

tighter budgets by steps of 100 locations, each time restricting the input locations to those that 

were selected in the previous run. This construction ensures that the determined locations are con-

sistent across the curve, i.e., the locations for smaller budgets are subsets of the locations for higher 

budgets. 
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3 Results 

The main result we present is a demand-based charging network expansion that places charging 

stops in alignment with European driving break regulation. In other words, the locations are com-

puted with respect constraints i) – iii) described in the previous section. We evaluate the accuracy 

of our sampling approach and the station capacity parameter. Additionally, we construct charging 

networks based on technological constraints such as vehicle range and charging power. We analyse 

the impact of varying these parameters on the feasibility of OD routes and the number of required 

charging locations.  

3.1 Optimized Charging Network Expansion 

Here we present an optimal charging network expansion based on the long-term network con-

straints induced by driving regulations. We evaluate 5 samples from the OD distribution with a 

proportional station capacity that corresponds to (at most) 100,000 HDV visits per year and location. 

We find that on average 97.9% of OD pairs with an associated truck flow of 98.7% are feasible in 

this model. Moreover, about 1,300 locations are sufficient to achieve the maximal coverage. 

We now check if all samples lead to equally representative solutions. To this end we compare the 

implied OD coverage across different samples in Figure 1. At the top we show the implied OD cov-

erage on each sample individually (semi-transparent lines) and on average (solid lines). Overall, we 

see only minor deviations between the different samples. At the bottom we compare the estimated 

in-sample vs. out-of-sample OD coverage by re-evaluating all samples on the locations computed 

for the first sample. At any point on the curve, we observe that the deviation between in-sample 

and out-of-sample coverage is less than 2 percentage points for OD pairs and less than 3 percent-

age points for OD truck flow. This confirms that the locations computed for one sample achieve 

comparable OD coverage on other samples, which suggests that the results translate proportionally 

to the entire data.  

Moreover, Figure 1 shows that for 15% BET in stock, 1,000 optimally placed megawatt charging 

locations in Europe could enable about 91% of electric long-haul trucking and 75% of OD pairs 

while 500 charging stations could enable about 50% of electric long-haul truck traffic.  
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Figure 1:  Share of covered OD pairs and OD truck flow versus number of locations. 

The top panel shows the results on 5 individual samples (thin lines) and the average (thick line). The 

bot-tom panel shows a comparison between in-sample (solid lines) and out-of-sample (dashed 

lines). In this scenario, each location can serve up to 100,000 HDV per year. 

 

 

However, the precise locations computed for distinct samples can differ. This is expected to some 

degree, since many different, but similarly sized sets of locations can achieve the same OD coverage 

and thus are equally good in the sense of the model. In Figure 2 we show some of the locations 

selected by the model for maximal coverage across all samples. The opacity of the points is pro-

portional to the number of samples that include them, and the size of the points is proportional to 

the OD truck flow assigned to them. We see that the locations are heavily concentrated along a few 

major roads. In the highest demand areas (e.g., between Hannover and Wolfsburg), almost all avail-

able candidates along the road are picked as their individual capacities are exhausted. 
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Figure 2: Cutout of the selected locations in the long-term network to achieve maximum 

OD coverage. 

The opacity of the bubbles indicates the number of samples that include the location, while the size is 

proportional to the number of vehicle visits. Along the major highway corridors, many locations reach 

the maximum demand set by the station capacity constraint. Background: OpenStreetMap 

 

Regarding the routes computed for each feasible OD pair, we analyse the number of charging 

stops per distance travelled. Figure 3 shows the distribution of the kilometre-per-stop ratio across 

all feasible truck flows. The values range (approx.) from 160 km to 400 km with an average of 280 

km. This matches expectations from the charging stop constraint set in the model. With this con-

straint, one stop may suffice for trips between 335 km and 400 km distance, while for longer trips 

the distance-per-stop ratio should approach a value between 200 km and 335 km. 

Figure 3: Distribution of the average distance-per-stop ratios for all origin-destina-

tion trips. 

The result matches the constraint set in the model, which enforces charging stops in flexible dis-

tance intervals. 
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3.2 Impact of Station Capacity 

In this section we show the impact of varying station capacity for a fixed number of locations. Recall 

that the station capacity expresses how many HDVs can visit each location per year. We repeat the 

prior experiment with two samples and station capacities as multiples of 10,000 between 10,000 

and 150,000 HDVs. For every station capacity value this yields independently computed results. 

Figure 4 shows the OD coverage curve for a fixed number of 1,000 locations. The OD coverage is 

mostly monotonically increasing, which is logical behaviour. Between capacities 110,000 and 

130,000, we see small deviations due to suboptimal model results. One can further see a diminish-

ing return pattern for the marginal benefit of higher station capacity. Nevertheless, for very large 

capacity values the OD coverage approaches maximum possible values even though the number 

of locations is fixed at 1,000. 

Figure 4:  Share of covered OD pairs and OD truck flow versus station capacity for 

1,000 locations. 

The semi-transparent dots represent results on individual samples and are independent between dif-

ferent capacities. The solid dots represent the averaged results over both samples. 

 

3.3 Optimized Networks based on Vehicle Technology 

In the construction of the charging network in Section 3.1, we assumed distance-based periodic 

charging stops inspired by EU driving break regulation. Therefore, those results were independent 

of vehicle range and charging power requirements. In this section, we compute instead charging 

networks that consider the range and travel time constraints iv) and v). The idle break time available 

for charging is set to 45 mins for every 4.5 hours, but we allow an arbitrary allocation of the break 

time during the trip. This enables longer distances between consecutive charging stops depending 

on the maximum vehicle range. In this model, while keeping station capacity fixed, we analyze the 

impact of varying charging power and vehicle range on OD pair feasibility and the number of re-

quired locations. 

We define several scenarios corresponding to different parameter combinations. In terms of maxi-

mum vehicle ranges (before subtraction of a 100 km safety margin) we consider the values 500 km, 

700 km and 900 km. The battery capacity is assumed to be proportional to the vehicle range based 

on a fixed battery consumption rate of 1.2 kWh/km, resulting in capacities 600 kWh, 840 kWh and 

1080 kWh, respectively. In terms of charging power, we consider the values 350 kW, 650 kW and 

1000 kW. Due to the half-range assumption at origin at destination, the energy that needs to be 

supplied during each trip must cover the entire trip distance and is the same in every scenario. For 
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350 kW charging power we found that the available charging time is mostly insufficient to supply 

enough energy under the present assumptions (no depot charging, only max. 45 min charging 

time). Accordingly, the share of feasible long-haul routes is less than 2%, and we exclude 350 kW 

chargers from the detailed results below. 

For the remaining parameter combinations, we compute an optimal charging network expansion 

with the help of two OD samples. In Table 1 we report the OD pair and flow coverage in each 

scenario and the minimal number of charging locations required to achieve that.  With 650 kW 

charging power 85% – 89% of trips are feasible and with 1000 kW charging power the OD coverage 

reaches its maximum at 97% – 99%. The maximum vehicle range affects route feasibility only indi-

rectly, as it impacts the charging location selection. This can even lead to a decrease in OD coverage 

as higher vehicle ranges imply more restrictive battery energy requirements at the trip destination. 

We suspect that part of the 1% – 3% reduction of OD feasibility for 900 km compared to 700 km 

vehicle range is due to this effect. More importantly, higher vehicle ranges for the same charging 

power lead to a significant decrease in the number of required locations, because the vehicles need 

fewer charging stops. For instance, with 1000 kW charging power an increase in vehicle range from 

500 km to 900 km leads to a 50% reduction of required charging locations while OD coverage is 

essentially unchanged. Finally, we observe that increasing charging power from 650 kW to 1000 kW 

reduces the number of required charging locations across all vehicle ranges while the OD coverage 

improves. Plots of the OD coverage curves for all scenarios can be found in Appendix A.1.3. 

Table 1:  Summary of charging networks computed based on vehicle range and 

charging power. 

The coverage of OD pairs/flows increases with higher charging power. The number of required 

charging locations decreases with vehicle range. 

Charging power 650 kW 1000 kW 

Vehicle range 500 km 700 km 900 km 500 km 700 km 900 km 

OD pair coverage 88.5% 89.9% 87.3% 97.6% 98.7% 98.1% 

OD flow coverage 87.5% 88.6% 85.4% 97.8% 98.4% 97.4% 

Required locations 1900 1600 1500 1200   

Average distance per stop 269 km 389 km 437 km 283 km 408 km 505 km 
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4 Discussion 

In this section we list potential caveats of our approach which may distort the results or limit their 

applicability. To this end, we mention issues related to the inputs and methodological shortcom-

ings. Afterwards we discuss potential insights from our analysis. 

First, the OD routes through the charging network that we determine rely on the availability of 

candidate locations in the relevant geographic area. In case there are not sufficient candidates 

available, the affected OD pairs are infeasible, i.e., no corresponding routes can be obtained.  

Second, the geo-coordinates that define the locations usually map to one side of the road. Due to 

physical barriers between roadsides, this could render some locations only accessible from one side 

of the road, although there are parking areas on both sides. In such cases, the routes using the 

opposite direction of travel may require prohibitive detours to use that location. 

Third, although the candidate locations are generally publicly accessible, there is significant uncer-

tainty around the suitability for HDV charging stations. In particular, there is insufficient information 

on power availability, which is essential for the purpose of megawatt charging. Besides the station 

capacity constraint described in Section 2.2, our optimization model prioritizes different locations 

purely based on geography. 

Fourth, since the coordinates of origins and destinations correspond to geometric centres of NUTS-

3 regions, they are sometimes in remote rural areas or far from the road network. This might bias 

the results towards selecting charging locations in areas that do not correlate to the relevant in-

dustrial and population centres. 

Lastly, some OD routes may include sections corresponding to ferry (or rail) connections. However, 

this information is not included in our data as we only query distance and transit time values for 

the benefit of scalability. Thus, the distance and transit time for such routes are distorted in com-

parison to exclusive road travel. On the one hand, trucks do not consume (as much) battery while 

on a ferry, which leads to an overestimation of charging needs around ferry trips. On the other 

hand, the transit time (per km) is higher relative to road travel, which increases the proportionally 

allocated charging time (in case the travel time constraint is used). Overall, we observe that the 

model is biased towards placing charging stations at seaports on either end of ferry connections, 

e.g., as in Figure 5. 
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Figure 5: Multiple charging locations around the port of Dublin as selected by the 

model. 

Background: OpenStreetMap 

 

In general, the model almost always selects fully developed locations. This is obvious because it can 

then handle a lot of traffic with just a few locations. Within the trip distances (>335 km), almost 

every vehicle passes busy roads. This means that it may not be needed for the model to expand the 

networks along routes with little traffic. Ergo, if full coverage need not be achieved, almost all loca-

tions are located on high-traffic routes and are fully developed. Additionally, the model has candi-

date locations available at very short intervals on the major roads. This means that a high number 

of fully utilized charging locations can be selected there. As the model covers the entire charging 

needs (there is no unaccounted depot charging), the charging stop requirement is roughly propor-

tional to trip distance. This explains why the coverage increases almost linearly with the locations. 

Only at the very end, when the most unfavourable routes (routes that avoid busy roads) must be 

electrified, less attractive locations away from major corridors are selected and we observe a dimin-

ishing return pattern. The map in Figure 2 then shows an intense case with large electrification, in 

which even the few trips that are often away from the busy roads must be electrified.  
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5 Summary & Conclusions 

Based on a unique data set of European long-haul truck traffic and actual truck stop locations, we 

applied an optimization algorithm to identify the best locations to cover as much electric truck 

traffic flow as possible. We added local station size limitations to make our findings more applicable 

to the real world. Adding size restrictions makes the optimization problem significantly harder and 

we used a novel sampling approach to keep the problem tractable while still representing smaller 

traffic flows in the problem. With respect to an electrification share of 15% BET in stock and without 

depot charging, our findings show that already 1,000 optimally placed megawatt charging locations 

in Europe could enable about 91% of electric long-haul trucking while 500 charging stations could 

enable about 50% of long-haul truck traffic. We furthermore show how the OD coverage scales 

with station size for a fixed number of 1,000 locations.  

For network planners and policy makers, our results indicate that one should place large charging 

hubs on high-traffic routes as sooner or later many trucks will pass by within their driving times. 

Second, one should expand the network step by step, adding locations along these corridors.  We 

already observe similar results in real-life for battery electric passenger cars on long-distance routes: 

massive expansion along the major axes, mostly financed by companies, while the feeder roads and 

less frequented motorways tend to be developed with subsidized, small charging parks to achieve 

area coverage. Optimization as used here demonstrates similar findings for HDVs with their largely 

different usage patterns.  

Likewise for truck operators, our findings indicate that already a limited network of a few hundred 

charging stations across all of Europe enables electrification of significant shares of truck traffic 

flows as the latter is often concentrated along major corridors and truck operators do not need to 

wait with electric long-haul trucking until the charging network is complete. 
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A.1 Appendix 

A.1.1 Geographic OD pair filter 

In the geographic OD pair filter, we remove the following regions: 

• All regions in the following countries: Russia, Belarus, Ukraine, Bosnia and Herzegovina, Mo-

rocco, Turkey, Montenegro, Kazakhstan, Macedonia, Cyprus 

• Any region south of 36 degrees parallel north (approx. latitude of Strait of Gibraltar) 

• Additionally, the following remote single-region islands: Jan Mayen, Regiao Autonoma dos 

Acores, Eivissa y Formentera, Mallorca, Menorca, Shetland Islands, Orkney Islands, Eilean Siar 

(Western Isles), Dodekanisos, Kyklades, Lesvos, Chios, Samos 

A.1.2 Mathematical optimization problem 

We consider a network graph 𝒢 consisting of origin/destination nodes and (candidate) charging 

locations ℒ. For any subset of charging locations 𝐿 ⊆ ℒ, let 𝒢(𝐿) denote the subgraph of 𝒢 induced 

by 𝐿, i.e., the network that only considers charging locations 𝑙 ∈ 𝐿. Routes between origin and des-

tination nodes are represented as paths in 𝒢(𝐿) for any selection of locations 𝐿. We define 𝒫𝑠𝑡 as 

the set of all feasible paths from origin 𝑠 to destination 𝑡. Here, feasibility means that any path 𝑃𝑠𝑡 ∈

𝒫𝑠𝑡 satisfies the route constraints described in Section 2.2. For the sake of brevity, we omit the 

details on how these constraints are modelled mathematically. 

Now we are given a set of origin-destination (OD) pairs  𝒬 and a cost budget 𝐵. Every OD pair 𝑠𝑡 ∈

𝒬 has an associated truck flow 𝑓𝑠𝑡  >  0. Additionally, every candidate charging location has an as-

sociated selection cost 𝑐𝑙  >  0 (in our case we set 𝑐𝑙  =  1 for all locations 𝑙) and station capacity κ𝑙 . 

The optimization problem we consider is stated mathematically as follows: 

𝑚𝑎𝑥
𝐿⊆ℒ,𝑄⊆𝒬,𝑃𝑠𝑡∈𝒫𝑠𝑡

                ∑ 𝑓𝑠𝑡

𝑠𝑡∈𝑄

                                           

subject to                    𝑃𝑠𝑡 ⊂ 𝒢(𝐿)           ∀𝑠𝑡 ∈  𝑄     (1) 

                        ∑ 𝑓𝑠𝑡

𝑠𝑡∈𝑄:𝑙∈𝑃𝑠𝑡

≤ κ𝑙              ∀𝑙 ∈ 𝐿        (2) 

                                    ∑ 𝑐𝑙

𝑙∈𝐿

≤ 𝐵                                    (3) 

The objective is to maximize the total truck flow that is feasible in the network induced by the 

selected charging locations (1), where the truck flow assigned to each individual location may not 

exceed its capacity (2). The total cost of the selected locations must be within the budget (3). 
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A.1.3 Supplementary plots 

The following plots show OD coverage curves that correspond to charging network results pre-

sented in Section 3.3. The left column corresponds to 650 kW charging power and vehicles ranges 

500 km, 700 km, and 900 km (from top to bottom). The right column contains plots for 1000 kW 

charging power and the same vehicle ranges. 

 


