Navigating the Roadmap for Clean, Secure and Efficient Energy Innovation

DECARBONIZING INDUSTRY: EXTENDING THE SCOPE OF MITIGATION OPTIONS

Dr. Andrea Herbst, Dr. Tobias Fleiter, Matthias Rehfeldt

SET-Nav Regional Workshop Budapest, 26 February 2019

I. Introduction

- II. Methodology
- III. Pathways
- IV. Results
- V. Conclusions

INDUSTRY ACCOUNTS FOR 25% OF EU FINAL ENERGY CONSUMPTION

- Dominant energy carriers: gas, electricity, coal and oil
- Current policy is not on the right track to decarbonisation and deep emission reductions require significant changes in the sector

EU28 INDUSTRIAL FINAL ENERGY DEMAND (2015)

TODAYS AVAILABLE TECHNOLOGIES ARE NOT SUFFICIENT FOR DECARBONISATION

- Deep decarbonisation not possible via BAT energy efficiency and traditional fuel switch
- Innovative low-carbon technologies are needed

I. Introduction

II. Methodology

- III. Pathways
- IV. Results
- V. Conclusions

FORECAST: BOTTOM-UP SIMULATION MODEL

ISL

FORECAST FORecasting Energy Consumption Analysis and Simulation Tool

**** **** ****

- I. Introduction
- II. Methodology

III. Pathways

- IV. Results
- V. Conclusions

PATHWAY CHARACTERIZATION BY MITIGATION OPTION

Clusters of mitigation options	REF	Directed Vision/ National Champions	Diversification/ Localisation
Incremental efficiency improvement	Energy efficiency progress according to current policy framework and historical trends.	Faster diffusion of incremental process improvements (BAT & INNOV ≥TRL 5).	Faster diffusion of incremental process improvements (BAT & INNOV ≥TRL 5).
Fundamental processes improvement energy efficiency, process emissions	-	-	Radical process improvements (INNOV ≥TRL 5)
Fuel switching to RES towards decarbonized electricity and/or hydrogen	Fuel switching driven by energy prices and assumed CO ₂ -price increase	 Fuel switching to biomass and power-to-heat (<500°). Use of existing technologies (no radical changes in industrial processes technologies). More district heating demand. 	Stronger fuel switching to biomass, power-to-heat and power-to-gas technologies. Radical changes in industrial process technologies drive fuel switch (e.g. switch to hydrogen). Lower demand for district heating.
Carbon capture and storage (CCS)	-	CCS for major energy-intensive point sources.	-
Recycling and re-use	Slow increase in recycling rates based on historical trends.	Stronger switch to secondary production.	Stronger switch to secondary production.
Material efficiency and substitution	Based on historic trends.	Less efforts in material efficiency & substitution	Decrease in clinker factor . Increase in material efficiency & substitution.

BREAK-THROUGH INNOVATIONS WITH DIFFERENT LEVELS OF MATURITY ARE UNDER DEVELOPMENT

BREAK-THROUGH INNOVATIONS WITH DIFFERENT LEVELS OF MATURITY ARE UNDER Strategic Energy Roadmap DEVELOPMENT

Solidia concrete recarbonating cement for precast concrete

Carbon concrete (C3) Carbon nanofibres reinforced concrete replacing steel concrete

BREAK-THROUGH INNOVATIONS WITH DIFFERENT LEVELS OF MATURITY ARE UNDER

DEVELOPMENT

- I. Introduction
- II. Methodology
- III. Pathways
- IV. Results
- V. Conclusions

VERY HIGH LEVEL OF AMBITION ENABLES A SET-Nav HIGH REDUCTION IN CO_2 EMISSIONS [EU28] Strategic Energy Roadmap

VERY HIGH LEVEL OF AMBITION ENABLES A SET-Nav HIGH REDUCTION IN CO_2 EMISSIONS [EU28] Strategic Energy Roadmap

REDUCTION IN FINAL ENERGY DEMAND LESS **SET-Nav** PRONOUNCED THAN EMISSIONS [EU28] Strategic Energy Roadmap

REDUCTION IN FINAL ENERGY DEMAND LESS **SET-Nav** PRONOUNCED THAN EMISSIONS [EU28]

RES H2 FEEDSTOCK DEMAND CHANGES ENERGY BALANCE BOUNDARIES [EU28]

LARGE VOLUMES OF RENEWABLE ELECTRICITY WILL BE NEEDED [EU28]

SHIFT TOWARDS ELECTRICITY & BIOMASS FOR PROCESS HEATING VIA FURNACES [EU28] Strategic Energy Roadmap

EU 28 final energy demand for process heating (>500°C)

High financial support for biomass

Biomass is used where **technically possible** (e.g. cement & lime)

Increase in **electricity** driven by **process switch**: e.g. electric furnaces (glass,steel), DR electrolysis

Use of **hydrogen** in steel production replacing BOF

Across all sectors and scenario still a **substantial amount** of **natural**

- I. Introduction
- II. Methodology
- III. Pathways
- IV. Results
- V. Conclusions

SUMMARY: INNOVATIONS FACILITATE DECARBONISATION OF EU INDUSTRY

Many thanks for your attention!

Dr. Andrea Herbst

Competence Center Energy Technology and Energy Systems Fraunhofer Institute for Systems and Innovation Research ISI Breslauer Straße 48, 76139 Karlsruhe, Germany Tel.: +49 (0) 721 6809 -439 E-Mail: <u>andrea.herbst@isi.fraunhofer.de</u> http://www.forecast-model.eu

The analysis was executed within the EU project SET-Nav (Navigating the Roadmap for Clean, Secure and Efficient Energy Innovation), which received funding from the European Union's Horizon 2020 research and innovation programme [GA-No. 691843]. For further information, see: http://www.set-nav.eu/.

